3 perioden gleitender durchschnittsrechner




3 perioden gleitender durchschnittsrechnerMoving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Ein gleitender Durchschnitt wird verwendet, um Unregelma?igkeiten (Spitzen und Taler) zu glatten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wahlen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wahlen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erlauterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Taler geglattet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt fur die ersten 5 Datenpunkte nicht berechnen, da nicht genugend fruhere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 fur Intervall 2 und Intervall 4. Fazit: Je gro?er das Intervall, desto mehr werden die Spitzen und Taler geglattet. Je kleiner das Intervall, desto naher sind die gleitenden Mittelwerte, um die tatsachlichen Datenpunkte. Moving Average Forecasting Einfuhrung. Wie Sie vermutlich schauen, betrachten wir einige der primitivsten Ansatze zur Prognose. Aber hoffentlich sind diese zumindest eine lohnende Einfuhrung in einige der Rechenprobleme im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir von Anfang an beginnen und beginnen mit Moving Average Prognosen zu arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen, unabhangig davon, ob sie glauben, sie sind. Alle Studenten tun sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, in dem Sie vier Tests wahrend des Semesters haben werden. Angenommen, Sie haben eine 85 auf Ihrem ersten Test. Was wurden Sie vorhersagen, fur Ihre zweite Test-Score Was glauben Sie, Ihr Lehrer wurde fur Ihre nachste Test-Punkt vorhersagen Was denken Sie, Ihre Freunde konnten fur Ihre nachste Test-Punkt vorherzusagen Was denken Sie, Ihre Eltern konnten fur Ihre nachste Test-Score Unabhangig davon vorhersagen Alle die blabbing Sie tun konnten, um Ihre Freunde und Eltern, sie und Ihr Lehrer sind sehr wahrscheinlich zu erwarten, dass Sie etwas im Bereich der 85 erhalten Sie gerade bekommen. Nun, jetzt gehen wir davon aus, dass trotz Ihrer Selbst-Forderung an Ihre Freunde, Sie uber-schatzen Sie sich und Figur, die Sie weniger fur den zweiten Test lernen konnen und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekummerten gehen Erwarten Sie erhalten auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansatze, damit sie eine Schatzung unabhangig davon entwickeln, ob sie sie mit Ihnen teilen. Sie konnen zu sich selbst sagen, dieser Kerl ist immer blast Rauch uber seine smarts. Hes gehend, ein anderes 73 zu erhalten, wenn hes glucklich. Vielleicht werden die Eltern versuchen, mehr unterstutzend und sagen, quotWell, so weit youve bekommen eine 85 und eine 73, so vielleicht sollten Sie auf eine uber (85 73) 2 79. Ich wei? nicht, vielleicht, wenn Sie weniger feiern Und werent wedelte das Wiesel ganz uber dem Platz und wenn Sie anfingen, viel mehr zu studieren, konnten Sie einen hoheren score. quot erhalten. Beide dieser Schatzungen sind wirklich gleitende durchschnittliche Prognosen. Der erste verwendet nur Ihre jungste Punktzahl, um Ihre zukunftige Leistung zu prognostizieren. Dies wird als gleitende Durchschnittsprognose mit einer Datenperiode bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass alle diese Leute, die auf deinem gro?en Verstand zerschmettern, Art von dich angepisst haben und du entscheidest, auf dem dritten Test aus deinen eigenen Grunden gut zu tun und eine hohere Kerbe vor deinen quotalliesquot zu setzen. Sie nehmen den Test und Ihre Gaste ist eigentlich ein 89 Jeder, einschlie?lich selbst, ist beeindruckt. So jetzt haben Sie die abschlie?ende Prufung des Semesters herauf und wie ublich fuhlen Sie sich die Notwendigkeit, alle in die Vorhersagen zu machen, wie youll auf dem letzten Test tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich konnen Sie das Muster sehen. Was glauben Sie, ist die genaueste Pfeife, wahrend wir arbeiten. Nun kehren wir zu unserer neuen Reinigungsfirma zuruck, die von Ihrer entfremdeten Halbschwester namens Whistle While We Work begonnen wurde. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Tabelle dargestellt werden. Zuerst prasentieren wir die Daten fur eine dreidimensionale gleitende Durchschnittsprognose. Der Eintrag fur Zelle C6 sollte jetzt sein Sie konnen diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie der Durchschnitt bewegt sich uber die jungsten historischen Daten, sondern verwendet genau die drei letzten Perioden zur Verfugung fur jede Vorhersage. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen fur die vergangenen Perioden zu machen, um unsere jungste Vorhersage zu entwickeln. Dies ist definitiv anders als das exponentielle Glattungsmodell. Ive eingeschlossen das quotpast predictionsquot, weil wir sie auf der folgenden Webseite verwenden, um Vorhersagegultigkeit zu messen. Nun mochte ich die analogen Ergebnisse fur eine zwei-Periode gleitenden Durchschnitt Prognose zu prasentieren. Der Eintrag fur Zelle C5 sollte jetzt sein Sie konnen diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stucke der historischen Daten fur jede Vorhersage verwendet werden. Wieder habe ich die quotpast Vorhersagequot fur illustrative Zwecke und fur die spatere Verwendung in der Prognose Validierung enthalten. Einige andere Dinge, die wichtig zu beachten sind. Fur eine m-Periode gleitende Durchschnittsprognose werden nur die m neuesten Datenwerte verwendet, um die Vorhersage durchzufuhren. Nichts anderes ist notwendig. Fur eine m-Periode gleitende durchschnittliche Prognose, wenn Sie Quotpast Vorhersagequot, beachten Sie, dass die erste Vorhersage tritt im Zeitraum m 1 auf. Diese beiden Fragen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der Moving Average Funktion. Nun mussen wir den Code fur die gleitende Durchschnittsprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben fur die Anzahl der Perioden sind, die Sie in der Prognose und dem Array der historischen Werte verwenden mochten. Sie konnen es in beliebiger Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) als einzelne Deklarations - und Initialisierungsvariablen Dim Item als Variant Dim Zahler als Integer Dim Summe als Single Dim HistoricalSize als Integer Initialisierung von Variablen Zahler 1 Akkumulation 0 Festlegung der Gro?e des Historical Arrays HistoricalSize Historical. Count For Counter 1 bis NumberOfPeriods Summieren der entsprechenden Anzahl der zuletzt beobachteten Werte Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklart. Sie wollen die Funktion in der Tabelle platzieren, so dass das Ergebnis der Berechnung erscheint, wo es die folgenden. Moving Average Calculator Angesichts einer Liste von sequentiellen Daten konnen Sie den n - point gleitenden Durchschnitt (oder rollenden Durchschnitt) durch Finden Der Mittelwert jedes Satzes von n aufeinanderfolgenden Punkten. Wenn Sie beispielsweise den geordneten Datensatz 10, 11, 11, 15, 13, 14, 12, 10, 11 haben, wird der 4-Punkt-Verschiebungsdurchschnitt 11,75, 12,5, 13,25, 13,5, 12,25, 11,75, Bewegungsdurchschnitte verwendet Um sequentielle Daten zu glatten, bilden sie scharfe Spitzen und Dips, die weniger ausgepragt sind, da jeder Rohdatenpunkt nur ein Bruchteilgewicht im gleitenden Durchschnitt gegeben wird. Je gro?er der Wert von n ist. Desto glatter ist der Graph des gleitenden Mittelwertes im Vergleich zum Graphen der ursprunglichen Daten. Aktienanalysten betrachten haufig bewegte Durchschnitte der Aktienpreisdaten, um Trends vorherzusagen und Muster besser zu sehen. Sie konnen den folgenden Taschenrechner verwenden, um einen gleitenden Durchschnitt eines Datensatzes zu finden. Anzahl der Begriffe in einem einfachen n-Punkt gleitenden Durchschnitt Wenn die Anzahl der Begriffe in der ursprunglichen Menge d ist und die Anzahl der in jedem Durchschnitt verwendeten Begriffe n ist. Dann wird die Anzahl der Begriffe in der gleitenden Durchschnittssequenz sein. Wenn Sie beispielsweise eine Sequenz von 90 Aktienkursen haben und den 14-tagigen Rollendurchschnitt der Kurse einnehmen, wird die rollende durchschnittliche Sequenz 90-14-177 Punkte haben. Dieser Rechner berechnet Bewegungsdurchschnitte, bei denen alle Begriffe gleich gewichtet werden. Sie konnen auch gewichtete gleitende Durchschnitte erstellen, in denen einige Begriffe starker gewichtet werden als andere. Zum Beispiel geben mehr Gewicht zu jungeren Daten, oder die Schaffung eines zentral gewichteten Mittelwert, wo die mittleren Begriffe werden mehr gezahlt. Siehe die gewichteten gleitenden Durchschnitte Artikel und Taschenrechner fur weitere Informationen. Zusammen mit bewegenden arithmetischen Mitteln schauen einige Analytiker auch den bewegten Median der geordneten Daten an, da der Median nicht von seltsamen Ausrei?ern betroffen ist.